Regularity of Multisubmeasures with Respect to the Wijsman Topology

نویسندگان

  • Alina Cristiana Gavriluţ
  • A. C. Gavriluţ
چکیده

In this article we introduce different types of regularity for multisubmeasures with respect to the Wijsman topology and establish several relationships with the types of regularity that we have studied in [3] and [5] with respect to the Hausdorff, respectively, the Vietoris topology. AMS Mathematics Subject Classification (2000): 28C15, 49J53

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Wijsman structure of a quantale-valued metric space

We define and study a quantale-valued Wijsman structure on the hyperspace of all non-empty closed sets of a quantale-valued metric space. We show its admissibility and that the metrical coreflection coincides with the quantale-valued Hausdorff metric and that, for a metric space, the topological coreflection coincides with the classical Wijsman topology. We further define an index of compactnes...

متن کامل

FUZZY GOULD INTEGRABILITY ON ATOMS

In this paper we study the relationships existing between total measurability in variation and Gould type fuzzy integrability (introduced and studied in [21]), giving a special interest on their behaviour on atoms and on finite unions of disjoint atoms. We also establish that any continuous real valued function defined on a compact metric space is totally measurable in the variation of a regula...

متن کامل

Approximation theorems for fuzzy set multifunctions in Vietoris topology. Physical implications of regularity

n this paper, we consider continuity properties(especially, regularity, also viewed as an approximation property) for $%mathcal{P}_{0}(X)$-valued set multifunctions ($X$ being a linear,topological space), in order to obtain Egoroff and Lusin type theorems forset multifunctions in the Vietoris hypertopology. Some mathematicalapplications are established and several physical implications of thema...

متن کامل

Quotient Arens regularity of $L^1(G)$

Let $mathcal{A}$ be a Banach algebra with BAI and $E$ be an introverted subspace of $mathcal{A}^prime$. In this paper we study the quotient Arens regularity of $mathcal{A}$ with respect to $E$ and prove that the group algebra $L^1(G)$ for a locally compact group $G$, is quotient Arens regular with respect to certain introverted subspace $E$ of $L^infty(G)$. Some related result are given as well.

متن کامل

Arens regularity of bilinear forms and unital Banach module spaces

Assume that $A$‎, ‎$B$ are Banach algebras and that $m:Atimes Brightarrow B$‎, ‎$m^prime:Atimes Arightarrow B$ are bounded bilinear mappings‎. ‎We study the relationships between Arens regularity of $m$‎, ‎$m^prime$ and the Banach algebras $A$‎, ‎$B$‎. ‎For a Banach $A‎$‎-bimodule $B$‎, ‎we show that $B$ factors with respect to $A$ if and only if $B^{**}$ is unital as an $A^{**}‎$‎-module‎. ‎Le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009